
Hierarchical Structure  and 
Predicting Missing Links

Cristopher Moore
University of New Mexico
and the Santa Fe Institute

joint work with
Aaron Clauset (UNM/SFI)

and Mark Newman (Michigan)



Three Goals

#1: Inferring network structure from 
observed data

#2: Generating random graphs which are 
statistically similar to real ones

#3: Predicting missing links



Two Extremes

• Proving theorems about simple models

• Captures some aspect of network structure,

• But leaves lots of other structure out.

• Observing patterns in real networks

• Good “natural history”

• But often ad-hoc.

• One possible bridge: Machine Learning.



Clustering: one level



Hierarchy: many levels



A Probabilistic Model
(with lots of parameters!)

• A binary tree T: leaves are original vertices, 
internal nodes represent communities

• Each internal node has a probability pi

• Two vertices are connected with probability 
pi where i is their lowest common ancestor

• Allows assortative or disassortative structure, 
or any mix across scales and subtrees



→
probability pi

A Probabilistic Model
(with lots of parameters!)



Maximum Likelihood

• For each internal node i,

• Li and Ri = # descendants

• Ei = # edges between them

• Likelihood these edges exist, 
and not others, is

Li = pEi
i (1− pi)LiRi−Ei
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Maximum Likelihood

• Each       is maximized by

• The likelihood of the entire tree is then

• The log-likelihood is

where

pi = Ei/LiRi

L(T ) =
∏

i

Li

h(p) = −p ln p− (1− p) ln(1− p)

Li

lnL(T ) = −
∑

i

Li Ri h(Ei/LiRi)



Maximum Likelihood
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A Markov Chain

• We update the tree T with rotations:

• We move with probability 1 if                     
and probability                         otherwiseexp(∆ lnL)

∆ lnL ≥ 0
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Some Nice Properties

• Easy to calculate              : just “local” terms

• Moves entire chunks of the tree, while 
keeping their internal structure the same 

• Allows us to sample trees with probability 
proportional to    , instead of just the one 
with max likelihood (helps avoid overfitting)

∆ lnL

L



Let’s Try it Out
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Experiments
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• Let’s sample many trees instead of one.

• From phylogeny construction: combine 
these into a consensus hierarchy, which 
includes the (weighted) majority of splits

• More appropriate than any single tree 
(even the most likely one)

Consensus Dendrograms



Consensus Dendrogram: 
Karate Club
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• Again, sample many trees instead of one.

• Calculate the (weighted) average probability 
that two vertices are connected, or that a 
vertex is part of a given community.

• Lets us classify how strongly a vertex is part 
of a group, or how “surprising” an edge is.

Sampling the Distribution



Average Probability of 
Edges and Vertices

!

"

#

$

%

&

'

(

)

!*

!!

!"

!#

!$

!%

!&

!'

!(

!)

"*

"!

""

"#

"$

"% "&

"'

"(

")

#*

#!

#"

##

#$



Consensus Dendrogram: 
NCAA
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Average Probability of 
Edges and Vertices
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• Idea: once we infer a hierarchical structure 
(or a distribution of them) we can use it to 
generate new random graphs.

• If these graphs are “similar” to the original 
(n.b.: application-dependent!) then we may 
have captured part of its structure.  
Generalizing from a single example!

• If they aren’t, we have falsified our model, 
which is a good thing to be able to do...

Goal #2: Generating 
Similar Random Graphs
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An Inferred Hierarchy
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Resampling the Ensemble:
Distance Distribution
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Goal #3: Link Prediction

• For many networks, edges are discovered 
one at a time, using difficult work in the 
field or laboratory

• Given the edges observed so far, can we 
predict missing ones better than chance?

• If so, we can focus our attention on pairs of 
vertices likely to be connected.



Our Approach

• Sample hierarchies using observed edges 

• Sort remaining pairs according to the 
average probability they are connected

• Predict the top few of these

• Cross-validation: remove some fraction of 
edges randomly, and try to re-predict the 
ones you removed



Some Simpler Methods

“Link Prediction” problem [Liben-Nowell and 
Kleinberg, 2003: predicting collaborations]
Guess that two vertices are connected if:

• They have many common neighbors

• They share a large fraction of their neighbors 
(Jaccard coefficient)

• The product of their degrees is large

• They have many short paths between them



 Other Methods: Metabolic
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 Other Methods: Bad Guys
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 Other Methods: Food Web
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Disassortativity:
Predators share Prey



• We have a rich space of hierarchical random 
graph models, not just assortative

• We use a Markov chain to sample the likely 
models from this space based on data

• This lets us generate random graphs which 
are statistically similar to an observed one

• It also lets us predict missing links with 
probability much better than chance.

Conclusion



Shameless Plug



Shameless Plug
The Nature of Computation

Mertens and Moore
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